Все о покупке и продаже автомобилей

Расчет и изготовление катушки кв диапазона для регенеративного радиоприемника. Изготовление дросселя, катушки индуктивности своими руками, самому, самостоятельно

Катушка индуктивности — винтовая, спиральная или винтоспиральная катушка из свёрнутого изолированного проводника, обладающая значительной индуктивностью при относительно малой ёмкости и малом активном сопротивлении. Как следствие, при протекании через катушку переменного электрического тока, наблюдается её значительная инерционность.

Для увеличения индуктивности применяют сердечники из ферромагнитных материалов: электротехнической стали, пермаллоя, флюкстрола, карбонильного железа, ферритов. Также сердечники используют для изменения индуктивности катушек в небольших пределах.

Существуют также катушки, проводники которых реализованы на печатной плате.

Катушка индуктивности в электрической цепи хорошо проводит постоянный ток и в то же время оказывает сопротивление переменному току, поскольку при изменении тока в катушке возникает ЭДС самоиндукции, препятствующая этому изменению.

Основным параметром катушки индуктивности является её индуктивность , которая определяет, какой поток магнитного поля создаст катушка при протекании через неё тока силой 1 ампер. Типичные значения индуктивностей катушек от десятых долей мкГн до десятков Гн.

Потери в проводах вызваны тремя причинами:

· Провода обмотки обладают омическим (активным) сопротивлением.

· Сопротивление провода обмотки возрастает с ростом частоты, что обусловлено скин-эффектом. Суть эффекта состоит в вытеснении тока в поверхностные слои провода. Как следствие уменьшается полезное сечение проводника и растет сопротивление.

· В проводах обмотки, свитой в спираль, проявляется эффект близости, суть которого состоит в вытеснении тока под воздействием вихревых токов и магнитного поля к периферии намотки. В результате сечение, по которому протекает ток, принимает серповидную форму, что ведёт к дополнительному возрастанию сопротивления провода.

Потери в диэлектрике (изоляции проводов и каркасе катушки) можно отнести к двум категориям:

· Потери от диэлектрика межвиткового конденсатора (межвитковые утечки и прочие потери характерные для диэлектриков конденсаторов).

· Потери от магнитных свойств диэлектрика (эти потери аналогичны потерям в сердечнике).

В общем случае можно заметить что для современных катушек общего применения потери в диэлектрике чаще всего пренебрежимо малы.

Потери в сердечнике складываются из потерь на вихревые токи, потерь на гистерезис и начальных потерь.

Потери на вихревые токи . Ток, протекающий по проводнику, индуцирует ЭДС в окружающих проводниках, например в сердечнике, экране и в проводах соседних витков. Возникающие при этом вихревые токи становятся источником потерь из-за сопротивления проводников.

Разновидности катушек индуктивности

Контурные катушки индуктивности . Эти катушки используются совместно с конденсаторами для получения резонансных контуров. Они должны иметь высокую стабильность, точность и добротность.

Катушки связи . Такие катушки применяются для обеспечения индуктивной связи между отдельными цепями и каскадами. Такая связь позволяет разделить по постоянному току цепи базы и коллектора и т. д. К таким катушкам не предъявляются жёсткие требования на добротность и точность, поэтому они выполняются из тонкого провода в виде двух обмоток небольших габаритов. Основными параметрами этих катушек являются индуктивность и коэффициент связи.

Вариометры. Это катушки, индуктивность которых можно изменять в процессе эксплуатации для перестройки колебательных контуров. Они состоят из двух катушек, соединённых последовательно. Одна из катушек неподвижная (статор), другая располагается внутри первой и вращается (ротор). При изменении положения ротора относительно статора изменяется величина взаимоиндукции, а следовательно, индуктивность вариометра. Такая система позволяет изменять индуктивность в 4 − 5 раз. В ферровариометрах индуктивность изменяется перемещением ферромагнитного сердечника.

Дроссели . Это катушки индуктивности, обладающие высоким сопротивлением переменному току и малым сопротивлением постоянному. Применяются в цепях питания радиотехнических устройств в качестве фильтрующего элемента. Для сетей питания с частотами 50-60 Гц выполняются на сердечниках из трансформаторной стали. На более высоких частотах также применяются сердечники из пермаллоя или феррита. Особая разновидность дросселей — помехоподавляющие ферритовые бочонки (бусины) на проводах.

Сдвоенные дроссели две намотанных встречно катушки индуктивности, используются в фильтрах питания. За счёт встречной намотки и взаимной индукции более эффективны для фильтрации синфазных помех при тех же габаритах. Сдвоенные дроссели получили широкое распространение в качестве входных фильтров блоков питания; в дифференциальных сигнальных фильтрах цифровых линий, а также в звуковой технике. Т.е. предназначены как для защиты источников питания от попадания в них наведённых высокочастотных сигналов, так и во избежание засорения питающей сети электромагнитными помехами. На низких частотах используется в фильтрах цепей питания и обычно имеет ферромагнитный (из трансформаторной стали) или ферритовый сердечник.

Применение катушек индуктивности

· Катушки индуктивности (совместно с конденсаторами и/или резисторами) используются для построения различных цепей с частотно-зависимыми свойствами, в частности, фильтров, цепей обратной связи, колебательных контуров и т. п..

· Катушки индуктивности используются в импульсных стабилизаторах как элемент, накапливающий энергию и преобразующий уровни напряжения.

· Две и более индуктивно связанные катушки образуют трансформатор.

· Катушка индуктивности, питаемая импульсным током от транзисторного ключа, иногда применяется в качестве источника высокого напряжения небольшой мощности в слаботочных схемах, когда создание отдельного высокого питающего напряжения в блоке питания невозможно или экономически нецелесообразно. В этом случае на катушке из-за самоиндукции возникают выбросы высокого напряжения, которые можно использовать в схеме, например, выпрямив и сгладив.

· Катушки используются также в качестве электромагнитов.

· Катушки применяются в качестве источника энергии для возбуждения индуктивно-связанной плазмы.

· Для радиосвязи — излучение и приём электромагнитных волн (магнитная антенна, кольцевая антенна).

o Рамочная антенна

o DDRR

o Индукционная петля

· Для разогрева электропроводящих материалов в индукционных печах.

· Как датчик перемещения: изменение индуктивности катушки может изменяться в широких пределах перемещением (вытаскиванием) сердечника.

· Катушка индуктивности используется в индукционных датчиках магнитного поля. Индукционные магнитометры были разработаны и широко использовались во времена Второй мировой войны.

Эффективные способы намотки, разработанные на нашем предприятии:

Позволяют снять ограничения на диапазоны применяемых напряжений, токов и температур. Снижают сечение провода, стоимость и массу катушек при тех же условиях эксплуатации. Либо позволяют повысить напряжения, токи и температуру эксплуатации при том же сечении провода.

Наши многолетние исследования показали, что наиболее эффективным способом охлаждения является воздушный. Применение дополнительных видов изоляции иногда бывает нежелательно и ухудшает свойства обмоток. Вместо изоляции мы применяем разделение обмотки на секции. Стремимся к увеличению площади контакта провода с мощными потоками воздуха.

1. Разделенная обмотка .

Лучшая альтернатива дополнительной изоляции. Обмотка разделена на любое количество секций, соединенных последовательно. Потенциал между секциями делится на количество секций. Потенциал между слоями делится на количество секций, помноженное на количество слоев. Потенциал между соседними витками в одном слое делится на количество секций, помноженное на количество слоев и количество витков в слое. Таким образом любое опасное пробивное напряжение можно снизить до электрозащитных показателей обыкновенного эмальпровода без применения особых электроизоляционных мер. Чем больше отдельных секций, тем лучше можно организовать охлаждение.

2. Бесконтактная обмотка.

Витки обмотки подвешены в воздухе на специальных растяжках. Не имеют механического, электрического и теплового контакта ни с какими другими материалами катушки, ни с каркасом, ни с корпусом, ни с электроизоляцией. Самое эффективное воздушное охлаждение, тепло- и электроизоляция.

3. Корпус в виде улитки.

Наиболее эффективным способом охлаждения обмоток мы считаем воздушное. Применение такого корпуса с вентиляторами и просчетом аэродинамических характеристик дает значительные преимущества.

4. Двухполупериодная обмотка.

Все новое - это хорошо забытое старое. Разделение обмотки на два плеча и включение через диодный мост дает попеременное включение плеч с частотой сети. В один полупериод одно плечо работает, другое отдыхает. Это позволяет применять обмотки с меньшим сечением. Особенно актуальна двухполупериодная обмотка там, где в небольшие габариты требуется поместить очень мощную обмотку с таким толстым проводом, который невозможно согнуть под требуемыми углами без повреждения. Или промышленность не выпускает настолько толстые шины, и таким образом можно перейти на меньшее сечение.

5. Трубопроводная обмотка.

Для работы на особо высоких температурных режимах. В качестве провода применяется медная труба, циркулирующая жидкость, насосы, теплообменники, хладогенераторы, резервуары.

6. Заливка компаундами с примесями на основе нитрида бора и другими для повышения теплопроводности компаунда. Либо виброустойчивая растяжка с применением специальных техпластин. Применяется на сложных виброударных режимах работы.

Наши специалисты разработают наиболее эффективный способ решения Ваших задач. Мы будем рады с Вами сотрудничать.

Ждем Ваших заказов.

Итак, дорогие друзья, если вы тут, то вам скорее всего интересно, как устроена катушка индуктивности (дроссель). Их существует очень большое количество разновидностей, и иногда они настолько сильно отличаются друг от друга, или наоборот - так похожи на обычный трансформатор, что не сразу и определить. Выглядит она примерно так:

А обозначается на схеме вот так:

Применяется катушка для многих целей:

  • подавление помех;
  • накопления энергии;
  • создания магнитных полей.

Катушка выполняется в виде спиральных обмоток одножильного или многожильного проводника вокруг главного стержня целиндрической формы.
-
Свойства катушки индуктивности:

  • Сопротивление катушки растет с увеличением частоты текущего через неё тока;
  • Скорость изменения тока через катушку ограничена и определяется индуктивностью катушки.

Схема работы катушки;

---
Давайте соберем свою катушку индуктивности!
B-магнитное поле,I-сила тока.

Для начала возьмем этот провод и сможем в спиральку.

На концы нашей катушку подадим электричество! Сделаем первые выводы о работе нашего устройства.Если на катушку беспрерывно подавать электрический ток,то его сила плавно увеличится.Если же резко убрать эл. ток,то его сила резко возрастет в катушку,и плавно убавится до нуля.

Бывает два вида катушек:

С немагнитным и магнитным сердечником.
Какая же у нас получилась катушка?Правильно,воздух-немагнитный сердечник.Такие катушки обычно наматываются на бумажную трубочку и используются,если индуктивность не превышает 5миллиГенри.
--
А вот так выглядят катушки с магнитным или железным сердечником:

Сердечник увеличивает силу катушки в разы...
А это типичный представитель данного вида-трансформатор:

У него имеется лишь два отличия от катушек с магнитным сердечником:

  1. У него железный сердечник,так как он имеет большую индуктивность.
  2. У него есть первичная и вторичная обмотка.

----
Ну вот и все,дорогие друзья,надеюсь вам понравилась моя статья,в которой я рассказывал о том,что такое катушка индуктивности,и как её сделать самому.

--------
Griguz_Piguz

Эксперимент по переделыванию батарейного регенератора(регенеративный радиоприемник) на лампе 2К2М под диапазон коротких волн(КВ, SW). Описано и проиллюстрированорасчет и изготовление катушки индуктивности для КВ диапазона. Также кратко расскажу как ведет себя приемник с новой катушкой и что изменилось.

Предисловие

Этот радиоприемник построен на радиолампе 2К2М и принимал радиовещательные станции в диапазонах СВ(средние волны), MW(middle waves) и ДВ(длинные волны), LW(long waves). Позже мне пришла идея попробовать переделать его под КВ(короткие волны), SW(short waves) диапазон.

Анализ и подготовка

Просмотрев несколько схем коротковолновых регенеративных радиоприемников, где так же используется катушка связи, пришел к выводу что для эксперимента достаточно будет сделать новую контурную катушку индуктивности.

Радиолампа 2К2М может работать на частотах до 25МГц, поэтому ее можно смело оставить, не меняя на более высокочастотную.

Что немного смущало так это емкость контурного КПЕ(конденсатор переменной емкости), она лежит в пределах 20-400 пФ, что для КВ диапазона немножко многовато как для минимального значения так и для максимального. Менять КПЕ не планировалось, поскольку все уже хорошо сидит на шасси, была лишь идея попробовать немножко сузить его емкость, подключив последовательно конденсатор некоторой емкости.

Общая емкость двух последовательно соединенных конденсаторов можно рассчитать по формуле:

С общ = (C1*C2) / (C1+C2)

При подключении к КПЕ(20-400пФ) последовательно конденсатора 50пФ общая емкость с регулировкой будет 14-44пФ. Не очень хорошее значение, хотя можно попробовать.

Теперь нам нужно рассчитать катушку индуктивности чтобы можно было принимать радиостанции в диапазоне КВ. На одном форуме нашел пост где человек изготавливал регенератор и для катушки КВ диапазона (40-80м) использовал вот такие данные:

  • Диаметр каркаса - 45мм;
  • Контурная катушка содержит 12 витков эмалированного провода диаметром 0.8мм;
  • Катушка связи содержит 3 витка эмалированного провода диаметром 0.5мм.

Доверяй, но проверяй! - давайте не поленимся и рассчитаем чего мы сможем добиться от катушки с такими параметрами.

Расчет индуктивности однослойной катушки

Посчитаем по формулам индуктивность однослойной контурной катушки с параметрами намотки что приведены выше. Для наглядности нарисовал рисунок:

Рис. 1. Катушка индуктивности, параметры.

Формула рассчета индуктивности катушки:

L = D*D*n*n / (45*D + 100*l), где:

  • L - индуктивность катушки, мкГн;
  • D - диаметр катушки, см;
  • n - число витков катушки;
  • l - длина намотки катушки, см.

L = 4.5*4.5*12*12 / (45*4.5 + 100*1.1) = 2916 / (202.5 + 110) = 9.3 мкГн(µH) =0.0000093 Гн = 9.3 * 10 −6 Гн.

Индуктивность катушки что содержит 12 витков провода (примерно 1,1 см в длину проводом 0.8мм) и намотана на каркасе диаметром 45мм составляет - 9.3 мкГн(µH). Все просто!

Расчет частоты колебательного контура

Зная индуктивность катушки и емкость конденсатора в нашем колебательном контуре сможем рассчитать его резонансную частоту.

Рис. 2. Схема колебательного контура.

Расчет частоты колебательного контура проведем используя формулу:

ƒ = 1 / (2 * π * √(LC)), где:

  • ƒ - резонансная частота контура, Гц;
  • π - число Пи, 3,1415;
  • L - индуктивность катушки, Гн;
  • С - емкость конденсатора, Ф.

Рассчитаем частоту колебательного контура взяв при этом нижнюю емкость конденсатора КПЕ что у меня есть: С = 20 пФ = 0.00000000002 Ф = 20 * 10 −12 Ф.

ƒ1 = 1 / (2 * 3.14 * √ (0.00000000002*0.0000093)) = 11675725,7 Гц = 11,67 МГц.

Теперь то же самое но берем верхнюю границу емкости КПЕ, возьмем больше половины: С = 300пФ = 0.0000000003 Ф = 300 * 10 −12 Ф.

ƒ2 = 1 / (2 * 3.14 * √ (0.0000000003*0.0000093)) = 3014659,4 Гц = 3,01 МГц.

И того, используя катушку индуктивности с приведенными выше параметрами и мой КПЕ я смогу покрыть диапазон примерно от 3 до 11 МГц.

Таблица КВ диапазонов

Короткие волны, отражаясь от поверхности земли могут распространяться на достаточно большие дистанции. То, насколько качественно мы сможем принимать волны разной длины зависит от многих факторов, одним из наиболее выраженных является время суток: день или ночь.

В день хорошо распространяются менее длинные волны, а ночью - большей длины.

Ниже приведу для справки таблицу вещательных КВ диапазонов с примечанием по зависимости от времени суток:

  • 11 метров, 25.600 - 26.100 MHz (дневной);
  • 13 метров, 21.450 - 21.850 MHz (дневной);
  • 15 метров, 18.900 - 19.020 MHz (дневной);
  • 16 метров, 17.480 - 17.900 MHz (дневной);
  • 19 метров, 15.100 - 15.900 MHz (дневной);
  • 21 метр, 13.500 - 13.870 MHz;
  • 25 метров 11.600 - 12.100 MHz;
  • 31 метра, 9.400 - 9.990 MHz;
  • 41 метра, 7.200 - 7.600 MHz;
  • 49 метров, 5.730 - 6.295 MHz;
  • 60 метров, 4.750 - 5.060 MHz (ночной);
  • 75 метров, 3.900 - 4.000 MHz (ночной);
  • 90 метров, 3.200 - 3.400 MHz (ночной);
  • 120 метров, 2.300 - 2.495 MHz (ночной).

Исходя из моих расчетов, что произведены выше, я смогу охватить радиоприемником диапазоны примерно в пределах 41 - 25 метров.

Изготовление катушки индуктивности

Все данные есть в наличии, можно приступать к изготовлению катушки индуктивности. Для иллюстрации подключения катушек размещу здесь часть схемы из своего радиоприемника.

Рис. 3. Схема включения катушек индуктивности в радиоприемнике(начала намотки обозначены точкой).

Если смотреть по схеме то для одного диапазона можно мотать на каркас всего две катушки: контурная заменит L1 и L2, а катушка связи заменит L3 и L4, при этом переключатель S1 можно исключить.

Я все же принял решение сделать 4 катушки как на схеме ради эксперимента, интересно как поведет себя такое решение в КВ диапазоне, к тому же возможно что получится захватить еще более низкочастотный диапазон в добавку к основному.

Первым делом нужно изготовить каркас на котором будем мотать провод. Под каркас можно использовать кусок полиэтиленовой или пластиковой трубы или же другой цилиндр нужного диаметра.

Мне понадобится каркас диаметром 45мм, поскольку нашел в барахле трубу немного меньшим диаметром 40мм и чтобы ее не портить было принято решение склеить вокруг нее каркас из бумаги.

Рис. 4. Каркас для катушки - кусок трубы.

Для склеивания использовал листы формата А4 - бумага достаточно плотная, хорошо подходит для подобных целей. Сначала мотаем на каркас 1-2 листа бумаги без промазывания клеем, это нужно чтобы можно было потом изять трубу.

Рис. 5. Несколько проклеенных между собой слоев бумаги для каркаса будущей катушки.

Теперь намазываем клеем каждый лист бумаги и оборачиваем в него каркас. Наклеивать желательно 5 и более листов бумаги - это поможет достигнуть достаточной прочности каркаса когда он высохнет. Для высушивания достаточно 12 часов, если клеить клеем ПВА.

После того как каркас высох оказалось что он настолько стянулся на трубе что ее извлечь теперь не предоставляется возможным - пришлось разрезать каркас вдоль и после изъятия склеить надрез. Каркас готов и он достаточно прочен для того чтобы мотать на него толстый провод.

Рис. 6. Каркас из бумаги для катушки индуктивности готов.

Для намотки использовал медный проводник диаметром 0.8мм и 0.5мм - контурная и катушка связи соответственно.

Рис. 7. Самодельная катушка индуктивности для КВ диапазона готова!

Рис. 8. Самодельная катушка КВ - вид со стороны выводов.

Для удобства я пометил точками начала намотки катушек - это поможет не запутаться при подключению ее к радиоприемнику. Крепление проводников реализовал сделав отверстия в каркасе при помощи иглы.

Рис. 9. Скрепляем витки обмоток воском.

Для того чтобы витки обмоток катушки держались надежно вместе можно склеить их клеем или же просто капнуть по несколько капелек воска.

Установка КВ катушки в радиоприемник

Теперь катушка для КВ диапазона готова к установке в радиоприемник. Нужно стараться использовать максимально короткие выводы от обмоток при соединении их с компонентами радиоприемника.

Рис. 10. Катушка КВ диапазона установлена в радиоприемник. (клик - увеличение).

Рис. 11. радиоприемник с установленной катушкой КВ диапазона, вид сзади. (клик - увеличение).

Рис. 12. Готовый КВ приемник и старая катушка для диапазонов СВ-ДВ.

Работа с приемником в КВ диапазоне

Приемник готов к работе, можно приступать к экспериментам. Пробы проводились в вечернее-ночное время. Сначала была подключена длинная антенна - кусок грубого медного провода длиной порядка 10 метров.

С такой антенной удалось поймать несколько станций, причем ручка регулировки обратной связи никак не влияла на работу радиоприемника, мне это показалось странным - возможно перепутал начала и концы при подключении обмоток обратной связи.

Подключение заземления также не улучшило результатов работы радиоприемника. Решил попробовать в качестве антенны медный штырь диаметром 1-1,2мм и длиной порядка 1-1,5м.

После включения радиоприемника результат не заставил себя ждать - удалось поймать несколько станций, причем ручка регенерации работала теперь отлично и удавалось словить и усилить достаточно слабые сигналы вещательных станций.

Получилось услышать Радио-Свобода, вещание из других стран, кодированные сигналы и другие станции на КВ. Самое большое скопление станций наблюдалось на пороговой границе регулировки КПЕ (С = 20пФ), скорее всего если уменьшить этот порог до 10 пФ то удастся поймать еще больше станций или же нужно делать перерасчет катушки с последующей ее перемоткой.

Приемник стал менее устойчивым к перестройке под воздействием рук и касаний разных частей схемы. Иногда можно даже побаловаться с антенной приемника как с антенной терменвокса(музыкальный инструмент).

Что еще можно попробовать

После расчетов сразу возникла мысль: можно ведь просчитать количество витков и сделать несколько катушек на разные поддиапазоны, а для их переключения использовать переключатель на несколько положений (5 например). В таком случае катушка связи будет одна (L3), а контурную катушку (L1) мотаем делая отводы от определенного количества витков.

Заключение

Эксперимент удался! Я получил интересный опыт и было увлекательно. Изначально не планировал писать о расчетах катушки и колебательного контура но посчитал что это может быть полезно для тех кто захочет повторить эксперимент. К тому же в процессе подготовки материалов и расчетов я узнал некоторые вещи о которых раньше и не подозревал.

Для того, чтобы создать магнитное поле и сгладить в нем помехи и импульсы, используются специальные накопительные элементы. Катушки индуктивности в цепи переменного тока и постоянного применяются для накопления определенного количества энергии и ограничения электричества.

Конструкция

Главное назначение катушек индуктивности ГОСТ 20718-75 – это накопление электрической энергии в пределах магнитного поля для акустики, трансформаторов и т. д. Их используют для разработки и конструирования различных селективных схем и электрических устройств. От конструкции (материала, количества витков), наличия каркаса зависит их функциональность, размеры и область использования. Изготовление устройств производится на заводах, но можно сделать их самостоятельно. Самодельные элементы несколько уступают по надежности профессиональным, но обходятся в разы дешевле.

Фото – схема

Каркас катушки индуктивности выполняется из диэлектрического материала. На него наматывается изолированный проводник, который может быть как одножильным, так и многожильным. В зависимости от типа намотки, они бывают:

  1. Спиральными (на ферритовом кольце);
  2. Винтовыми;
  3. Винтоспиральными или комбинированными.

Примечательной особенностью катушки индуктивности для электрических схем является то, что её можно намотать как в несколько слоев, так и нированно, т. е., с обрывками Если используется толстый проводник, то элемент может обматываться без каркаса, если тонкий – то только на рамку. Эти каркасы катушек индуктивности бывают различного сечения: квадратные, круглые, прямоугольные. Полученная намотка может вставляться в специальный корпус какого-либо электрического устройства или использоваться в открытом виде.


Фото – конструкция самодельного элемента

Для увеличения индуктивности используются сердечники. В зависимости от назначения элемента, варьируется используемый материал стержня:

  1. С ферромагнитным и воздушным сердечником применяются при высоких частотах тока;
  2. Стальные используются в условиях низкого напряжения.

Исходя из принципа работы, бывают такие типы:

  1. Контурные. Преимущественно используются в радиотехнике для создания колебательных контуров платы, работают вместе с конденсаторами. Для соединения используется последовательное подключение. Это современный вариант плоской контурной катушки Тесла;
  2. Вариометры. Это высокочастотные перестраиваемые катушки, индуктивностью которыми можно при необходимости управлять при помощи дополнительных устройств. Они представляют собой соединение двух отдельных катушек, при этом, одна подвижна, а вторая нет;
  3. Сдвоенные и подстроечные дроссели. Основные характеристики этих катушек: малое сопротивление постоянному току и высокое переменному. Дроссели изготавливаются из нескольких катушек, соединенных обмотками между собой. Их часто используют в виде фильтра для различных радиотехнических приборов, устанавливают для контроля помех в антенны и т. д.;
  4. Трансформаторы связи. Их конструктивной особенностью является то, что на одном стержне установлено от двух и более катушек. Они используются в трансформаторах для обеспечения определенной связи между отдельными компонентами устройства.

Маркировка катушек индуктивности определяется по количеству витков и цвету корпуса.

Фото – маркировка

Принцип действия

Схема работы катушек индуктивности активного действия основан на том, что каждый отдельный виток намотки пересекается с магнитными силовыми линиями. Этот электрический элемент необходим для того, чтобы извлекать электрическую энергию из источника питания и преобразовывая её сохранять в виде электрического поля. Соответственно, если ток цепи увеличивается – то расширяется и магнитное поле, но если он уменьшается – поле будет неизменно сжиматься. Эти параметры также зависят от частоты и напряжения, но в целом, действие остается неизменным. Включение элемента производит сдвиг фаз тока и напряжения.


Фото – принцип работы

Помимо этого, индуктивные (каркасные и бескаркасные) катушки обладают свойством самоиндукции, его расчет производится исходя из данных номинальной сети. В многослойной и однослойной обмотке создается напряжение, которое противоположно напряжению электрического тока. Это называется ЭДС, определение электродвижущей магнитной силы зависит от показателей индуктивности. Её можно рассчитать по закону Ома. Стоит отметить, что независимо от напряжения сети, сопротивление в катушке индуктивности не изменяется.


Фото – соединение отдельных выводов элементов

Связь индуктивности и понятия (изменения) ЭДС можно найти по формуле ε c = – dФ/dt = – L*dI/dt, где ε – это значение ЭДС самоиндукции. И если скорость изменения электрической энергии будет равна dI/dt = 1 A/c, то и L = ε c .

Видео: расчет катушки индуктивности

Вычисление

Формула – формула колебательного контура

Где L – это сам элемент, накапливающая магнитную энергию.

В это же время, период свободных колебаний этого контура вычисляется по:

Формула – период свободных колебаний

Где C – это конденсатор, реактивный элемент схемы, отдающий накапливающий электрическую энергию конкретной цепи. Величина индуктивного сопротивления в такой цепи вычисляется по X L = U/I. Здесь X – это емкостное сопротивление. При расчете резистора в пример вставляются основные параметры этого элемента.

Индуктивность соленоида определяет формула:

Формула – индуктивность катушки-соленоида

Помимо этого, уровень индуктивности имеет определенную зависимость от температуры на плате. Параллельное подключение нескольких деталей, изменение плотности и размеров витков обмотки и прочие параметры влияют на основные свойства этого элемента.

Фото – зависимость от температуры

Чтобы узнать параметры катушки индуктивности, можно использовать различные методы: измерить мультиметром, испытать на осциллографы, проверить отдельно амперметром или вольтметром. Эти варианты очень удобны тем, что в них в качестве реактивных элементов применяются конденсаторы, электропотери которых очень малы и могут не учитываться в расчетах. Иногда с целью упростить задачу применяется специальная программа расчета и измерения нужных параметров. Это позволяет значительно упростить выбор нужных элементов для схем.

Купить катушки индуктивности (SMD 150 мкГн и другие) и провода для их намотки можно в любом электротехническом магазине, их цена варьируется от 2 долларов до нескольких десятков.

Для проведения опытов с электричеством и для постройки некоторых приборов, будет необходим, кроме понижающего, и мощный повышающий трансформатор, каким является катушка Румкорфа — индукционная катушка.

Желательно построить катушку, которая давала бы искру длиной в 10—15 сантиметров. Это в значительной степени облегчило бы постройку таких приборов, как, например, рентгеновский аппарат.

Но особенно увлекаться большой мощностью индукционной катушки не следует, так как изоляция провода может не выдержать слишком высокого напряжения и катушка сгорит.

При наличии же материалов, имеющихся в продаже, вполне возможно построить индукционную катушку с искрой в 8—10 сантиметров. А этого для начала будет вполне достаточно.

Принцип действия индукционной катушки в точности такой же, как и трансформатора, поэтому мы не будем останавливаться на этом вопросе.

Катушку Румкорфа для нас вполне может заменить бобина от автомашины. Но если такой не окажется в нашем распоряжении, то индукционную катушку придется изготовить самим.

Детали катушки Румкорфа

Сердечник

Сердечник катушки делается из железной проволоки, которая употребляется для упаковки ящиков, или жести от консервных банок. Проволоку или жесть, предназначенную для сердечника, необходимо отжечь, то есть накалить в печи до тёмно-красного накала и затем медленно остудить в горячей золе. После этого с проволоки надо тщательно счистить окалину и покрыть проволоку спиртовым лаком, или, лучше, шеллаком.

После того как проволока просохнет, ее складывают в пучок и крепко обматывают изоляционной лентой. Поверх изоляционной ленты на сердечник следует намотать еще слоя четыре пропарафиненной бумаги.

Готовый сердечник и его размеры показаны на рисунке: Рисунок 1: а — сердечник для катушки Румкорфа, б — секции для вторичной обмотки, в — футляр для катушки Румкорфа с разрядником.

После этого можно приступить к изготовлению обмоток.

Обмотка сердечника

Обмотка сердечника производится в той же последовательности, как и у всякого трансформатора, то есть сначала наматывается первичная обмотка и на нее — вторичная, повышающая обмотка.

Так как большинство аккумуляторов и батарей накала имеет в среднем напряжение 4 вольта, то и нам лучше сделать индукционную катушку, которая работала бы от 4 вольт.

Для этого на первичную обмотку нам потребуется медный изолированный провод, желательно с двойной шелковой изоляцией, диаметром 1,5 мм. Такой проволоки нам потребуется 25 метров.

Закрепив конец провода ниткой на расстоянии 40 мм от торца сердечника и оставив конец провода длиной в 100 мм, намотку производят по часовой стрелке, с плотной укладкой витка к витку. Когда таким образом сердечник будет обмотан одним слоем провода по длине 220 мм, делается петля длиной в 100 мм, провод снова закрепляется ниткой и ведется второй слой намотки в том же направлении.

Намотав второй слой, конец обмотки нужно прочно закрепить с помощью суровой нитки и всю обмотку залить горячим парафином.

Средний отвод от первичной обмотки позволит нам применять в работе напряжение в 2 вольта, а следовательно, вдвое повысить коэффициент трансформации и в конечном итоге увеличить длину искры. Использованием же одновременно обеих секций, параллельно включенных, мы сможем подать на первичную обмотку повышенный ток и тем самым еще несколько увеличить мощность искры.

Вторичную обмотку катушки необходимо сделать многосекционной. Многосекционная обмотка облегчит ее исправление в случае повреждения. Ведь перемотать одну поврежденную секцию значительно легче, чем перематывать всю обмотку, состоящую из многих тысяч витков тончайшего провода.

Для вторичной обмотки нам придется изготовить 10 таких секций, которые нанизываются на сердечник одна за другой. Каждая секция изготовливается из картона толщиной в 1 мм, предварительно проваренного в парафине. Это необходимо для повышения изоляционных качеств картона. Лучше, конечно, если вы сделаете катушки из тонкой фибры.

Внутреннее отверстие катушек должно быть таким, чтобы они с трением надевались на сердечник с первичной обмоткой, поверх которой предварительно будет намотано еще два слоя пропарафиненной бумаги.

Когда все катушки будут готовы, можно приступить к изготовлению вторичной обмотки. Для вторичной обмотки нам потребуется изолированный провод ПЭ или ПШО, диаметром 0,1 мм. Будьте осторожны, особенно при намотке проводом ПШО, так как под шелко-вой изоляцией трудно заметить обрыв такого тонкого проводника. А если будет обрыв, то вся работа пойдет впустую.

Секции вторичной обмотки также надо наматывать аккуратно, виток к витку, и обязательно все секции должны быть намотаны в одном направлении. Следует также, намотав несколько слоев, проложить слой пропарафиненной бумаги и продолжать намотку.

Если во время намотки будет обнаружен обрыв провода, то концы его надо тщательно зачистить, скрутить между собой и обязательно спаять, а затем тщательно изолировать пропарафиненной бумагой.

Намотку каждой секции следует закончить, не доходя 5 мм до верхнего борта катушки. На этом расстоянии делается тонкий прокол в щечке катушки; провод прочно закрепляют в ней и оставляют свободный конец в 5—7 см.

Обмотку катушки сверху покрывают несколькими слоями пропарафиненной бумаги и изоляционной лентой.

Когда будут намотаны все 10 секций, первичная обмотка покрывается 2—3 слоями пропарафиненной бумаги и на нее надеваются секции второй обмотки. При этом надо следить, чтобы все катушки были надеты в последовательном порядке, то есть их обмотки составляли бы продолжение одна другой. В таком же последовательном порядке их и соединяют между собой: конец обмотки первой секции соединяется с началом обмотки второй секции, а конец второй секции — с началом третьей секции и т.д.

К началу и концу вторичной обмотки припаивается по куску толстого гибкого провода длиной по 15 см каждый; после этого вся катушка заливается парафином так, чтобы она представляла сплошную парафиновую массу. При этом надо следить, чтобы не оставалось пустот между секциями, не залитых парафином. Следовательно, катушку надо заливать постепенно. Для удобства заливки надо склеить из картона цилиндр диаметром 115 мм и длиной 240 мм.

Катушку устанавливают в цилиндре так, чтобы между ней и стенками цилиндра было одинаковое расстояние. После этого в цилиндр осторожно, не спеша, наливают расплавленный парафин. После остывания парафина цилиндр с катушки снимать не надо — он будет служить футляром. Его нужно только закрыть с торцов картонными дисками.

Механический прерыватель для катушки

Механический прерыватель для катушки можно сделать таким же, как и у электрического звонка. Поэтому, если у кого найдется старый электрический звонок, то им вполне можно воспользоваться.

Прерыватель необходим для того, чтобы из постоянного тока, который поступает от аккумулятора, получалось переменное напряжение, иначе трансформатор-катушка не будет трансформировать ток.

Для механического прерывателя надо изготовить детали, указанные на рис. 2. Якорь а вырезается из упругого железа. Лучше, конечно, сделать его из тонкой стальной пластинки, потому что он должен хорошо пружинить. Контактную пластину б можно сделать из латуни толщиной в 2 мм или из жести.

Как в якорь, так и в контактную пластину для лучшего соединения между ними при работе необходимо вклепать серебряные контакты. Их можно сделать из старинной серебряной монеты. Рис. 2. Детали прерывателя катушки Румкорфа. а — якорь прерывателя катушки Румкорфа, б — контактная пластина к якорю, в — собранный прерыватель.

Прерыватель собирается на внутренних стенках футляра катушки. На нижней стенке прикрепляется якорь так, чтобы он был на расстоянии 2—3 мм от сердечника катушки. К противоположной стенке прикрепляется контактная пластина так, чтобы она своим серебряным контактом хорошо прижималась к серебряному контакту якоря (см. рис. 2в). Конец первичной обмотки катушки присоединяется к якорю, а от контактной пластины делается отвод, к которому мы будем присоединять второй полюс аккумулятора.

Прерыватель действует так: когда мы включаем напряжение, то ток через контактную пластину, соединенную с якорем, проходит по первичной обмотке катушки. В это время сердечник намагничивается и притягивает якорь. Якорь, притянувшись к сердечнику, размыкает цепь. С отсутствием электрического тока магнитные силы исчезают из сердечника, якорь вновь возвращается в прежнее положение, то есть замыкает цепь, ток вновь поступает в катушку, сердечник опять притягивает якорь и т.д.

Таким образом в первичной обмотке нашей катушки создается переменное напряжение, которое трансформируется вторичной обмоткой и повышается в несколько сот раз.

Из сказанного выше нетрудно понять, что если у кого-нибудь найдется повышающий трансформатор, то его легко можно переделать в катушку Румкорфа. Для этого придется только сменить сердечник—сделать его прямым, не замыкающимся, как у обычных трансформаторов, и устроить прерыватель.

Искра такой катушки будет зависеть от соотношения витков первичной и вторичной обмоток. У кого найдется понижающий трансформатор с напряжением в 4—6 вольт, тот может использовать катушку Румкорфа как повышающий трансформатор, включив в нее переменный ток в 4—6 вольт, и снять то же напряжение с повышающей обмотки, как и от аккумуляторов. Только в этом случае включать напряжение надо прямо в первичную обмотку катушки, минуя прерыватель.

Разрядник

Разрядник устроен очень просто. Он состоит из двух стоек с контактами, к которым присоединяются концы вторичной обмотки катушки. На вершинах стоек укреплены два стержня, направленных друг к другу.

Если стержни будут сдвинуты на такое расстояние, которое может покрыть искра, вырабатываемая нашей катушкой, то между стержнями образуется сплошная дуга из электрических искр.

Стойки устанавливаются на крышке деревянного футляра катушки на расстоянии 150 мм. Их можно изготовить из сухого дерева или изоляционных материалов — фибры, эбонита, карболита. Стойки делаются длиной 150 мм и диаметром 20 мм. На расстоянии 30 мм от одного торца в стойках просверливаются сквозные отверстия для стержней, а с торцов просверливаются отверстия по центру до пересечения стержневых отверстий. В них будут ввертываться крепящие винты.

Если стойки будут сделаны из дерева, то в торцы можно просто ввернуть шурупы. Рядом со стойками ввертываются две клеммы, к которым снизу крышки присоединяются начало и конец вторичной обмотки, если катушка будет работать от переменного тока.

Если же она будет работать от аккумулятора, то нужно будет изготовить еще и прерыватель. Тогда соединение будет иным. Готовый и установленный разрядник показан на рис. 1в. Для лучшего предохранения катушки от всяких случайных повреждений надо сделать деревянный футляр. Размеры его показаны на рис. 1в.

Вам также будет интересно:

Красный лук: уникально полезный и изысканный
О пользе , в частности, о его способности улучшать пищеварение, укреплять иммунитет,...
Оверсайз – комфортный тренд-абсолют!
Свобода стиля и свобода кроя, комфорт и непринужденность - преимущества одежды oversize...
Что такое оверсайз, и как его носить?
Сегодня мы расскажем вам про оверсайз. Что это такое, детально рассмотрим также. Также...
Чувствительность тестов на беременности: когда покажет результат и на какой день задержки следует делать
Статья Беременность - это приятный период. В этот промежуток времени женщина носит под...
Причины и виды выделений из груди желтого цвета при надавливании
Причины выделений из молочных желез могут быть природными и патологическими, то есть...