Все о покупке и продаже автомобилей

Общее устройство системы питания. Система питания

Для того чтобы любой двигатель работал как часы в идеальном состоянии должны быть все его детали. Мало того, системы, обеспечивающие его функционирование, не могут сбоить. Выход из строя хотя бы одной из них приведёт к нестабильному функционированию устройства. При наихудшем развитии событий это может привести к ДТП.

Одной из самых важных систем обслуживания ДВС является система питания. Она поставляет топливо внутрь, где оно воспламеняется и превращается в механическую энергию.

ДВС существует огромное множество. За время развития автомобилестроения учёными было придумано множество конструкций, каждая из которых представляла собой очередной виток развития индустрии. Очень немногие из них пошли в серийное производство. Тем не менее за почти что сто лет непрерывной эволюции были выделены такие основные конструкции:

  • дизельная,
  • инжекторная,
  • карбюраторная.

Каждая из них имеет свои преимущества и недостатки, мало того, система питания ДВС в каждой конструкции разная.

Дизель

Система питания дизельного ДВС

Когда топливо попадает в камеру сгорания, система питания для дизельного ДВС создаёт нужное давление. Также в её круг задач входит:

  • дозировка топлива;
  • впрыскивание нужного количества топливной жидкости за определённый временной период;
  • распыление и распределение;
  • фильтрация топливной жидкости перед поступлением в насос.

Чтобы лучше понять устройство системы питания дизельного двигателя, нужно знать, что собой представляет дизельное топливо само по себе. По своей структуре это смесь керосина и солярки после специальной обработки. Эти вещества образуются, когда из нефти выделяется бензин. По факту — это остатки от основного производства, которые автомобилестроители научились эффективно использовать.

Дизельное топливо, циркулирующее в системе ДВС имеет такие параметры:

  • октановое число,
  • вязкость,
  • температура застывания,
  • чистота.

Дизельное топливо в системе ДВС делится на три сорта в зависимости от описанных выше параметров:

  • летнее,
  • зимнее,
  • арктическое.

В действительности классификация может происходить по нескольким критериям и быть куда более глубокой. Тем не менее если брать во внимание общепринятый стандарт, то он будет именно таким.

Теперь рассмотрим подробнее структуру системы ДВС, она состоит из таких элементов:

Все эти элементы составляют общую систему питания, которая обеспечивают стабильную работу двигателя. Если брать во внимание конструкцию, то она делится на две подсистемы: ту которая обеспечивает подачу воздуха, и другую, реализующую поступление топлива.

Топливо циркулирует по двум магистралям. Одна имеет низкое давление. В ней хранится и фильтруется топливная жидкость, после чего направляется к насосу с высоким давлением.

Непосредственно в камеру сгорания топливо попадает через магистраль с высоким давлением. Именно через неё в определённый момент проходит впрыск топливной субстанции внутрь камеры.

Важно! В насосе есть два фильтра. Один обеспечивает грубую очистку, а второй тонкую.

ТНВД осуществляет питание форсунок. Режим его работы напрямую зависит от режима функционирования цилиндров двигателя. В топливном насосе всегда чётное количество секций. Мало того, их число напрямую зависит от количества цилиндров. Точнее, один параметр соответствует другому.

Форсунки установлены в головках цилиндров. Именно они осуществляют питание камеры сгорания путём распыления топливной субстанции внутри. Но есть один маленький нюанс. Дело в том, что насос подаёт топлива намного больше, чем нужно. Проще говоря, объём питания слишком велик. К тому же внутрь попадает воздух, который может помешать всей работе.

Внимание! Чтобы не было сбоев в работе существует дренажный трубопровод. Именно он отвечает за то, чтобы воздух отводился обратно в топливный бак.

Форсунки в конструкции, отвечающей за питание ДВС, могут быть закрытыми и открытыми. В первом случае закрытие отверстий происходит благодаря запорной игле. Чтобы это стало возможным — внутренняя полость деталей соединяется с камерой сгорания. Вот только происходит это при впрыскивании жидкости .

Главным элементом в конструкции форсунки является распылитель. Он может иметь как одно, так и несколько сопловых отверстий. Благодаря им структура питания ДВС создаёт своеобразный факел.

Чтобы повысить мощность к системе питания ДВС добавляют турбину. Она позволяет автомобилю значительно быстрее набирать обороты. Кстати, раньше подобные устройства устанавливались только на гоночных и грузовых автомобилях. Но современные технологии позволили не только сделать изделие в разы дешевле, но и значительно уменьшили габариты конструкции.

Турбина способна подавать воздух через систему питания ДВС внутрь цилиндров. За наддув отвечает турбокомпрессор. Для своей работы он использует отработанные газы. Внутрь камеры сгорания воздух попадает под давлением от 0,14 до 0,21 МПа.

Роль турбокомпрессора заключается в наполнение цилиндров нужным для работы объёмом воздуха. Если же говорить про мощностные характеристики, то данный элемент в системе питания ДВС позволяет добиться прироста до 25—30 процентов.

Важно! Турбина увеличивает нагрузку на детали.

Возможные неисправности

Несмотря на ряд видимых преимуществ системы питания ДВС, она всё же имеет ряд весомых недостатков, которые могут вылиться в целый ряд неисправностей, к самым распространённым можно причислить:

  1. Двигатель не желает запускаться. Обычно подобная неисправность указывает на неполадки в топливоподкачивающем насосе. Но возможны и другие варианты, к примеру, ненадлежащее состояние форсунок, системы зажигания, плунжерных пар или нагнетательного клапана.
  2. Неравномерная работа двигателя указывает на неполадки с отдельными форсунками. Негерметичность в клапане может привести к таким же результатам. Также в процессе эксплуатации авто может наблюдаться ослабление крепления плунжера.
  3. Двигатель не даёт заявленной производителем мощности. Чаще всего данный дефект связан всё с топливоподкачивающим насосом. Форсунки и обрыв сопла могут привести к такому же результату.
  4. Стук при работе мотора, дым из-под капота . Такое случается тогда, когда топливо подаётся внутрь системы слишком рано, или же оно имеет не соответствующее, заявленным производителями нормам цетановое число.
  5. Негромкие хлопки. Причина подобной неисправности в системе питания ДВС кроется в подсосе воздуха.
  6. Стук муфты. Такое происходит в том случае, если слишком изношены детали устройства и наблюдается сильная усадка пружин.

Как видите, неисправностей системы ДВС может быть более чем достаточно. Именно поэтому, чтобы точно определить в чём дело необходимо провести комплексную диагностику. Причём для некоторых манипуляций необходимо специальное оборудование.

Практически все описанные выше неисправности можно исправить. Полная замена системы питания ДВС нужна лишь в крайних случаях. Мало того, даже простая регулировка может полностью восстановить работоспособность автомобильного узла.

Методы восстановления ДВС, работающего на дизеле

Чтобы восстановить работоспособность устройства нужно очистить продувочные окна от нагара, если он там присутствует. Проверьте достаточно ли внутри муфты смазки. Если количество смазочного вещества минимально — добавьте его до приемлемого объёма

Чаще всего двигатель стучит и дымит в тех случаях, когда заливаемое вам топливо имеет малое цетановое число. К счастью, рецепт выхода из этой ситуации довольно прост. Достаточно поменять топливную жидкость на ту, в которой данный показатель будет больше 40.

Инжекторный двигатель

Система питания инжекторного двигателя

Инжекторные системы питания стали применяться вначале 80-х годов прошлого века. Они пришли на смену конструкциям с карбюраторами. В устройстве, работающем с инжектором, каждый цилиндр имеет свою форсунку.

Форсунки прикреплены к топливной раме. Внутри данной конструкции топливная жидкость находится под давлением, которое обеспечивает насос. Чем более длительный период времени открыта форсунка, тем больше количества топлива впрыскивается внутрь.

Период, который форсунки находятся в открытом положении, контролирует электронный контроллер. Это своеобразный блок управления с чётко выстроенным алгоритмом управления. Он согласует момент открытия с показаниями датчиков. Работа электронной начинки не прекращается ни на секунду. Благодаря этому обеспечивается стабильная подача топлива.

Важно! За расход воздуха отвечает специальный датчик. Именно по циклам рассчитывается наполнение цилиндров.

Нагрузку для дроссельной заслонки определяет отдельный датчик. Точнее он проводит подсчёты. После чего отправляет данные контроллеру, где происходит сверка и осуществляются коррективы при необходимости.

Если говорить про инжекторную систему питания ДВС то она практически полностью работает за счёт показателей множества датчиков. К самым важным можно причислить датчики, отвечающие за такие параметры:

  • температуру,
  • положение коленчатого вала,
  • концентрацию кислорода,
  • контроль детонации при зажигании.

Мало того, это только основные датчики. В действительности в системе питания ДВС их намного больше.

Неисправности

Как было сказано выше, система питания ДВС практически полностью построена на работе датчиков. Наибольший вред может нанести поломка датчика, отвечающего за коленчатый вал. Если такое произойдёт, то вы даже не доедете до гаража. Тоже случится и при отказе бензонасоса.

Важно! Если вы собираетесь в длительную поездку возьмите с собой запасной бензонасос. Это второе сердце вашего авто.

Если же говорить про самые безопасные неисправности системы питания ДВС, то это, безусловно, поломка датчика фазы. Этот дефект нанесёт наименьший вред авто. К тому же, ремонт займёт минимум времени.

Важно! О неисправности датчика фазы говорит нестабильная работа форсунок. Обычно об этом свидетельствует резкий скачок расхода бензина.

Карбюраторные двигатели

Система питания

Первый карбюраторный двигатель был создан в прошлом веке Готлибом Даймлером. Система питания карбюраторного двигателя не отличается особой сложностью и состоит из таких элементов, как:

Вместимость бака обычно составляет порядка 40—80 литров в автомобилях с карбюраторными системами питания ДВС. Данное устройство в большинстве случаев монтируется в задней части машины для большей безопасности.

Из топливного бака бензин поступает в карбюратор. Соединяет эти два устройства топливная магистраль. Она проходит под днищем транспортного средства. В процессе транспортировки топливо проходит несколько фильтров. За подачу отвечает насос.

Неисправности

Конструкция является самой старой из всех трёх. Несмотря на это её простота помогает значительно уменьшить риск какой-либо поломки. К сожалению, от неисправностей не застрахована ни одна система питания ДВС, в том числе и карбюраторная, с ней могут произойти такие дефекты:

  • обеднение топливной смеси,
  • прекращение подачи топлива,
  • протечка бензина.

Подтёки легко замечаются невооружённым глазом. Прекращение подачи топливной жидкости не позволит авто сдвинуться с места. Если карбюратор чихает, значит, топливная смесь является обеднённой.

Итоги

За годы развития автомобильной индустрии было создано множество систем питания ДВС. Первой была карбюраторная. Она самая простая и неприхотливая. Её преемницами являются дизельная и инжекторная.

Система питания автомобиля используется для подготовки топливной смеси. Она состоит из двух элементов: топлива и воздуха. Система питания двигателя выполняет сразу несколько задач: очищение элементов смеси, получение смеси и ее подача к элементам двигателя. В зависимости от используемой системы питания автомобиля различается состав горючей смеси.

Типы систем питания

Различают следующие виды систем питания двигателя, отличающиеся местом образования смеси:

  1. внутри двигательных цилиндров;
  2. вне двигательных цилиндров.

Топливная система автомобиля при образовании смеси за пределами цилиндра разделяется на:

  • топливную систему с карбюратором
  • с использованием одной форсунки (с моно впрыском)
  • инжекторную

Назначение и состав топливной смеси

Для бесперебойной работы двигателя автомобиля необходима определенная топливная смесь. Она состоит из воздуха и топлива, смешанных по определенной пропорции. Каждая из этих смесей характеризуется количеством воздуха, приходящегося на единицу топлива (бензина).

Для обогащенной смеси характерно наличие 13-15 частей воздуха, приходящихся на часть топлива. Такая смесь подается при средних нагрузках.

Богатая смесь содержит менее 13 частей воздуха. Применяется при больших нагрузках. Наблюдается увеличенный расход бензина.

У нормальной смеси характерно наличие 15 частей воздуха на часть топлива.
Обедненная смесь содержит 15-17 частей воздуха и применяется при средних нагрузках. Обеспечивается экономный расход топлива. Бедная смесь содержит более 17 частей воздуха.

Общее устройство системы питания

В системе питания двигателя имеются следующие основные части:

  • бак для топлива. Служит для хранения топлива, содержит насос для закачки топлива и иногда фильтр. Имеет компактные размеры
  • топливопровод. Это устройство обеспечивает поступление топлива в специальное смесеобразующее устройство. Состоит из различных шлангов и трубок
  • устройство смесеобразования. Предназначено для получения топливной смеси и подачи в двигатель. Такими устройствами могут быть инжекторная система, моновпрыск, карбюратор
  • блок управления (для инжекторов). Состоит из электронного блока, управляющего работой системы смешения и сигнализирующего о возникающих сбоях в работе
  • топливный насос. Необходим для поступления топлива в топливопровод
  • фильтры для очистки. Необходимы для получения чистых составляющих смеси

Карбюраторная система подачи топлива

Эта система отличительна тем, что смесеобразование происходит в специальном устройстве – карбюраторе. Из него смесь попадает в нужной концентрации в двигатель. Устройство системы питания двигателя содержит такие элементы: бак для топлива, очищающие фильтры для топлива, насос, фильтр для воздуха, два трубопровода: впускной и выпускной, карбюратор.

Схема системы питания двигателя реализуется так. В баке находится топливо, которое будет использоваться для подачи в . Оно попадает в карбюратор через топливопровод. Процесс подачи может быть реализован с помощью насоса или естественным способом с помощью самотека.

Чтобы топливная подача осуществлялась в камеру карбюратора самотеком, то его (карбюратор) необходимо размещать ниже топливного бака. Такую схему не всегда можно реализовать в автомобиле. А вот использование насоса дает возможность не зависеть от положения бака относительно карбюратора.

Топливный фильтр очищает топливо. Благодаря ему из топлива удаляются механические частички и вода. Воздух попадает в камеру карбюратора через специальный фильтр для воздуха, очищающий его от частиц пыли. В камере происходит смешение двух очищенных составляющих смеси. Попадая в карбюратор, топливо поступает в поплавковую камеру. А после направляется в камеру смесеобразования, где соединяется с воздухом. Через дроссельную заслонку смесь поступает во впускной коллектор. Отсюда она направляется к цилиндрам.

После отработки смеси газы из цилиндров удаляются с помощью выпускного коллектора. Далее из коллектора они направляются в глушитель, который подавляет их шум. Из него они поступают в атмосферу.

Подробно об инжекторной системе

В конце прошлого столетия карбюраторные системы питания стали интенсивно заменяться новыми системами, работающими на инжекторах. И не просто так. Такое устройство системы питания двигателя обладало рядом преимуществ: меньшая зависимость от свойств окружающей среды, экономная и надежная работа, выхлопы менее токсичны. Но у них есть недостаток – это высокая чувствительность к качеству бензина. Если этого не соблюдать, то могут возникнуть неполадки в работе некоторых элементов системы.

«Инжектор» переводится с английского, как форсунка. Одноточечная (моновпрысковая) схема системы питания двигателя выглядит так: топливо подается на форсунку. Электронный блок подает на нее сигналы, и форсунка открывается в нужный момент. Топливо направляется в камеру смесеобразования. Далее все происходит как в карбюраторной системе: образуется смесь. Затем она проходит впускной клапан и попадает в цилиндры двигателя.

Устройство системы питания двигателя, организованное с помощью инжекторов, следующее. Эта система характеризуется наличием нескольких форсунок. Данные устройства получают сигналы от специального электронного блока и открываются. Все эти форсунки соединены друг с другом с помощью топливопровода. В нем всегда имеется в наличии топливо. Лишнее топливо удаляется по обратному топливопроводу назад в бак.

Электронасос подает топливо в рампу, где образуется избыточное давление. Блок управления направляет сигнал на форсунки, и, они открываются. Топливо впрыскивается во впускной коллектор. Воздух, проходя дроссельный узел, попадает туда же. Полученная смесь поступает в двигатель. Количество необходимой смеси регулируется с помощью открытия дроссельной заслонки. Как только такт впрыска заканчивается, форсунки снова закрываются, прекращается подача топлива.

На всех современных автомобилях с бензиновыми моторами используется инжекторная система подачи топлива, поскольку она является более совершенной, чем карбюраторная, несмотря на то, что она конструктивно более сложная.

Инжекторный двигатель – не новь, но широкое распространение он получил только после развития электронных технологий. Все потому, что механически организовать управление системой, обладающей высокой точностью работы было очень сложно. Но с появлением микропроцессоров это стало вполне возможно.

Инжекторная система отличается тем, что бензин подается строго заданными порциями принудительно в коллектор (цилиндр).

Основным достоинством, которым обладает инжекторная система питания, является соблюдение оптимальных пропорций составных элементов горючей смеси на разных режимах работы силовой установки. Благодаря этому достигается лучший выход мощности и экономичное потребление бензина.

Устройство системы

Инжекторная система подачи топлива состоит из электронной и механической составляющих. Первая контролирует параметры работы силового агрегата и на их основе подает сигналы для срабатывания исполнительной (механической) части.

К электронной составляющей относится микроконтроллер (электронный блок управления) и большое количество следящих датчиков:

  • положения коленвала;
  • массового расхода воздуха;
  • положения дроссельной заслонки;
  • детонации;
  • температуры ОЖ;
  • давления воздуха во впускном коллекторе.

Датчики системы инжектора

На некоторых авто могут иметься еще несколько дополнительных датчиков. У всех у них одна задача – определять параметры работы силового агрегата и передавать их на ЭБУ

Что касается механической части, то в ее состав входят такие элементы:

  • электрический топливный насос;
  • топливные магистрали;
  • фильтр;
  • регулятор давления;
  • топливная рампа;
  • форсунки.

Простая инжекторная система подачи топлива

Как все работает

Теперь рассмотрим принцип работы инжекторного двигателя отдельно по каждой составляющей. С электронной частью, в целом, все просто. Датчики собирают информацию о скорости вращения коленчатого вала, воздуха (поступившего в цилиндры, а также остаточной его части в отработанных газах), положения дросселя (связанного с педалью акселератора), температуры ОЖ. Эти данные датчики передают постоянно на электронный блок, благодаря чему и достигается высокая точность дозировки бензина.

Поступающую с датчиков информацию ЭБУ сравнивает с данными, внесенными в картах, и уже на основе этого сравнения и ряда расчетов осуществляет управление исполнительной частью.В электронный блок внесены так называемые карты с оптимальными параметрами работы силовой установки (к примеру, на такие условия нужно подать столько-то бензина, на другие – столько-то).

Первый инжекторный двигатель Toyota 1973 года

Чтобы было понятнее, рассмотрим более подробно алгоритм работы электронного блока, но по упрощенной схеме, поскольку в действительности при расчете используется очень большое количество данных. В целом, все это направлено на высчитывание временной длины электрического импульса, который подается на форсунки.

Поскольку схема – упрощенная, то предположим, что электронный блок ведет расчеты только по нескольким параметрам, а именно базовой временной длине импульса и двум коэффициентам – температуры ОЖ и уровне кислорода в выхлопных газах. Для получения результата ЭБУ использует формулу, в которой все имеющиеся данные перемножаются.

Для получения базовой длины импульса, микроконтроллер берет два параметра – скорость вращения коленчатого вала и нагрузку, которая может высчитываться по давлению в коллекторе.

К примеру, обороты двигателя составляют 3000, а нагрузка 4. Микроконтроллер берет эти данные и сравнивает с таблицей, внесенной в карту. В данном случае получаем базовую временную длину импульса 12 миллисекунд.

Но для расчетов нужно также учесть коэффициенты, для чего берутся показания с датчиков температуры ОЖ и лямбда-зонда. К примеру, температура составляется 100 град, а уровень кислорода в отработанных газах составляет 3. ЭБУ берет эти данные и сравнивает с еще несколькими таблицами. Предположим, что температурный коэффициент составляет 0,8, а кислородный – 1,0.

Получив все необходимые данные электронный блок проводит расчет. В нашем случае 12 множиться на 0,8 и на 1,0. В результате получаем, что импульс должен составлять 9,6 миллисекунды.

Описанный алгоритм – очень упрощенный, на деле же при расчетах может учитываться не один десяток параметров и показателей.

Поскольку данные поступают на электронный блок постоянно, то система практически мгновенно реагирует на изменение параметров работы мотора и подстраивается под них, обеспечивая оптимальное смесеобразование.

Стоит отметить, что электронный блок управляет не только подачей топлива, в его задачу входит также регулировка угла зажигания для обеспечения оптимальной работы мотора.

Теперь о механической части. Здесь все очень просто: насос, установленный в баке, закачивает в систему бензин, причем под давлением, чтобы обеспечить принудительную подачу. Давление должно быть определенным, поэтому в схему включен регулятор.

По магистралям бензин подается на рампу, которая соединяет между собой все форсунки. Подающийся от ЭБУ электрический импульс приводит к открытию форсунок, а поскольку бензин находится под давлением, то он через открывшийся канал просто впрыскивается.

Виды и типы инжекторов

Инжекторы бывают двух видов:

  1. С одноточечным впрыском. Такая система является устаревшей и на автомобилях уже не используется. Суть ее в том, что форсунка только одна, установленная во впускном коллекторе. Такая конструкция не обеспечивала равномерного распределения топлива по цилиндрам, поэтому ее работа была сходной с карбюраторной системой.
  2. Многоточечный впрыск. На современных авто используется именно этот тип. Здесь для каждого цилиндра предусмотрена своя форсунка, поэтому такая система отличается высокой точностью дозировки. Устанавливаться форсунки могут как во впускной коллектор, так и в сам цилиндр (инжекторная ).

На многоточечной инжекторной системе подачи топлива может использовать несколько типов впрыска:

  1. Одновременный. В этом типе импульс от ЭБУ поступает сразу на все форсунки, и они открываются вместе. Сейчас такой впрыск не используется.
  2. Парный, он же попарно-параллельный. В этом типе форсунки работают парами. Интересно, что только одна из них подает топливо непосредственно в такте впуска, у второй же такт не совпадает. Но поскольку двигатель – 4-тактный, с клапанной системой газораспределения, то несовпадение впрыска по такту на работоспособность мотора влияния не оказывает.
  3. Фазированный. В этом типе ЭБУ подает сигналы на открытие для каждой форсунки отдельно, поэтому впрыск происходит с совпадением по такту.

Примечательно, что современная инжекторная система подачи топлива может использовать несколько типов впрыска. Так, в обычном режиме используется фазированный впрыск, но в случае перехода на аварийное функционирование (к примеру, один из датчиков отказал), инжекторный двигатель переходит на парный впрыск.

Обратная связь с датчиками

Одним из основных датчиков, на показаниях которого ЭБУ регулирует время открытия форсунок, является лямбда-зонд, установленный в выпускной системе. Этот датчик определяет остаточное (не сгоревшее) количество воздуха в газах.

Эволюция датчика лямбда-зонд от Bosch

Благодаря этому датчику обеспечивается так называемая «обратная связь». Суть ее заключается вот в чем: ЭБУ провел все расчеты и подал импульс на форсунки. Топливо поступило, смешалось с воздухом и сгорело. Образовавшиеся выхлопные газы с не сгоревшими частицами смеси выводится из цилиндров по системе отвода выхлопных газов, в которую установлен лямбда-зонд. На основе его показаний ЭБУ определяет, правильно ли были проведены все расчеты и при надобности вносит корректировки для получения оптимального состава. То есть, на основе уже проведенного этапа подачи и сгорания топлива микроконтроллер делает расчеты для следующего.

Стоит отметить, что в процессе работы силовой установки существуют определенные режимы, при которых показания кислородного датчика будут некорректными, что может нарушить работу мотора или требуется смесь с определенным составом. При таких режимах ЭБУ игнорирует информацию с лямбда-зонда, а сигналы на подачу бензина он отправляет, исходя из заложенной в карты информации.

На разных режимах обратная связь работает так:

  • Запуск мотора. Чтобы двигатель смог завестись, нужна обогащенная горючая смесь с увеличенным процентным содержанием топлива. И электронный блок это обеспечивает, причем для этого он использует заданные данные, и информацию от кислородного датчика он не использует;
  • Прогрев. Чтобы инжекторный двигатель быстрее набрал рабочую температуру ЭБУ устанавливает повышенные обороты мотора. При этом он постоянно контролирует его температуру, и по мере прогрева корректирует состав горючей смеси, постепенно ее обедняя до тех пор, пока состав ее не станет оптимальным. В этом режиме электронный блок продолжает использовать заданные в картах данные, все еще не используя показания лямбда-зонда;
  • Холостой ход. При этом режиме двигатель уже полностью прогрет, а температура выхлопных газов – высокая, поэтому условия для корректной работы лямбда-зонда соблюдаются. ЭБУ уже начинает использовать показания кислородного датчика, что позволяет установить стехиометрический состав смеси. При таком составе обеспечивается наибольший выход мощности силовой установки;
  • Движение с плавным изменением оборотов мотора. Для достижения экономичного расхода топлива при максимальном выходе мощности, нужна смесь со стехиометрическим составом, поэтому при таком режиме ЭБУ регулирует подачу бензина на основе показания лямбда-зонда;
  • Резкое увеличение оборотов. Чтобы инжекторный двигатель нормально отреагировал на такое действие, нужна несколько обогащенная смесь. Чтобы ее обеспечить, ЭБУ использует данные карт, а не показания лямбда-зонда;
  • Торможение мотором. Поскольку этот режим не требует выхода мощности от мотора, то достаточно, чтобы смесь просто не давала остановиться силовой установке, а для этого подойдет и обедненная смесь. Для ее проявления показаний лямбда-зонда не нужно, поэтому ЭБУ их не использует.

Как видно, лямбда-зонд хоть и очень важен для работы системы, но информация с него используется далеко не всегда.

Напоследок отметим, что инжектор хоть и конструктивно сложная система и включает множество элементов, поломка которых сразу же сказывается на функционировании силовой установки, но она обеспечивает более рациональный расход бензина, а также повышает экологичность автомобиля. Поэтому альтернативы этой системе питания пока нет.

Autoleek

В карбюраторном двигателе в качестве топлива применяется бензин. Бензин представляет собой легковоспламеняющуюся жидкость, которая получается из нефти путем прямой перегонки, или крекинга. Бензин является одним из главных компонентов горючей смеси. При нормальных условиях сгорания рабочей смеси происходит постепенное увеличение давления в цилиндрах двигателя. При применении топлива более низкого качества, чем этого требуют технические параметры автомобильного двигателя, скорость сгорания рабочей смеси может увеличиться в 100 раз и составлять 2000 м/с, такое быстрое сгорание смеси называют детонацией. Склонность бензина к детонации условно характеризуется октановым числом, чем выше октановое число бензина, тем менее он склонен к детонации. Бензин с более высоким октановым числом применяют в автомобильных двигателях с более высокой степенью сжатия. Для снижения детонации в бензин добавляют этиловую жидкость.

В цилиндрах автомобильного двигателя рабочий процесс протекает достаточно быстро. Например, если коленчатый вал вращается со скоростью 2000 об./мин., то каждый такт совершается за 0,015 с. Для этого необходимо, чтобы скорость сгорания топлива составляла 25-30 м/с. Однако горение топлива в камере сгорания происходит медленнее. Для того чтобы повысить скорость сгорания, топливо размельчается на мельчайшие частицы и смешивается с воздухом. Установлено, что для нормального сгорания 1 кг топлива необходимо 15 кг воздуха, смесь с таким соотношением (1:15) называется нормальной. Однако при таком соотношении не происходит полного сгорания топлива. Для полного сгорания топлива необходимо больше воздуха и соотношение топлива к воздуху должно быть 1:18. Такая смесь называется обедненной. При увеличении соотношения скорость сгорания резко снижается, и при соотношении 1:20 воспламенения не происходит вообще. Но наибольшая мощность двигателя достигается при соотношении 1:13, в этом случае скорость сгорания близка к оптимальной. Такая смесь называется обогащенной. При таком составе смеси не происходит полного сгорания топлива, поэтому с увеличением мощности увеличивается расход топлива.

При работе двигателя выделяют следующие режимы:
1) пуск холодного двигателя;
2) работа на малой частоте вращения коленчатого вала (режим холостого хода);
3) работа при частичных (средних) нагрузках;
4) работа при полных нагрузках;
5) работа при резком увеличении нагрузки или частоты вращения коленчатого вала (разгон).

При каждом отдельном режиме состав горючей смеси должен быть разным.
Система питания двигателя предназначена Для приготовления и подачи в камеры сгорания горючей смеси, кроме этого система питания регулирует количество и состав рабочей смеси.

Система питания карбюраторного двигателя включает в себя следующие элементы:
1) топливный бак;
2) топливопроводы;
3) топливные фильтры;
4) топливный насос;
5) карбюратор;
6) воздушный фильтр;
7) выпускной коллектор:
8) впускной коллектор;
9) глушитель шума выпуска отработанных газов.

На современных автомобилях вместо карбюраторных систем питания все чаще применяют инжекторные системы впрыска топлива . На двигателях легковых автомобилей может быть установлена система распределительного впрыска топлива или система центрального одноточечного впрыска топлива.

Инжекторные системы впрыска топлива имеют ряд преимуществ перед карбюраторными системами питания:
1) отсутствие добавочного сопротивления потоку воздуха в виде диффузора карбюратора, что способствует лучшему наполнению камер сгорания цилиндров и получению более высокой мощности;
2) улучшение продувки цилиндров за счет использования возможности более длительного периода перекрытия клапанов (при одновременно открытых впускных и выпускных клапанах);
3) улучшение качества приготовления рабочей смеси за счет продувки камер сгорания чистым воздухом без примеси паров топлива;
4) более точное распределение топлива по цилиндрам, что дает возможность использования бензина с более низким октановым числом;
5) более точный подбор состава рабочей смеси на всех стадиях работы двигателя с учетом его технического состояния.

Кроме достоинств инжекторная система имеет один существенный недостаток. Инжекторная система впрыска топлива имеет более высокую степень сложности изготовления деталей, а также эта система включает в себя множество электронных компонентов, что приводит к удорожанию автомобиля и к сложности его обслуживания.

Система распределительного впрыска топлива является наиболее современной и совершенной. Основным функциональным элементом этой системы является электронный блок управления (ЭБУ). ЭБУ по существу представляет собой бортовой компьютер автомобиля. ЭБУ осуществляет оптимальное управление механизмами и системами двигателя, обеспечивает наиболее экономичную и эффективную работу двигателя с максимальной защитой окружающей среды на всех режимах.

Система распределительного впрыска топлива состоит из:
1) подсистемы подачи воздуха с дроссельной заслонкой;
2) подсистемы подачи топлива с форсунками по одной на каждый цилиндр;
3) системы дожигания доработанных газов;
4) системы улавливания и сжижения паров бензина.

Кроме управляющих функций ЭБУ имеет функции самообучения, функции диагностики и самодиагностики, а также он закладывает в память предыдущие параметры и характеристики работы двигателя, изменение его технического состояния.

Система центрального одноточечного впрыска топлива отличается от системы распределительного впрыска тем, что в ней отсутствует отдельный для каждого цилиндра (распределительный) впрыск бензина. Подача топлива в этой системе осуществляется при помощи центрального модуля впрыска с одной электромагнитной форсункой. Регулировка подачи топливовоздушной смеси осуществляется дроссельной заслонкой. Распределение рабочей смеси по цилиндрам осуществляется, как и в карбюраторной системе питания. Остальные элементы и функции данной системы питания такие же, как и в системе распределительного впрыска.

Вам также будет интересно:

Красный лук: уникально полезный и изысканный
О пользе , в частности, о его способности улучшать пищеварение, укреплять иммунитет,...
Оверсайз – комфортный тренд-абсолют!
Свобода стиля и свобода кроя, комфорт и непринужденность - преимущества одежды oversize...
Что такое оверсайз, и как его носить?
Сегодня мы расскажем вам про оверсайз. Что это такое, детально рассмотрим также. Также...
Чувствительность тестов на беременности: когда покажет результат и на какой день задержки следует делать
Статья Беременность - это приятный период. В этот промежуток времени женщина носит под...
Причины и виды выделений из груди желтого цвета при надавливании
Причины выделений из молочных желез могут быть природными и патологическими, то есть...